# **Questions**

Q1.

Given

$$f(x) = e^{x}, \quad x \in \mathbb{R}$$
$$g(x) = 3\ln x, \quad x > 0, x \in \mathbb{R}$$

(a) find an expression for gf(x), simplifying your answer.

(b) Show that there is only one real value of *x* for which gf(x) = fg(x)

(3)

(2)

#### (Total for question = 5 marks)

Q2.

$$g(x) = \frac{2x+5}{x-3} \qquad x \ge 5$$

(a) Find gg(5).

- (2)
- (b) State the range of g. (1)
- (c) Find  $g^{-1}(x)$ , stating its domain.

(3)

## (Total for question = 6 marks)

Q3.





Figure 4 shows a sketch of the graph of y = g(x), where

$$g(x) = \begin{cases} (x-2)^2 + 1 & x \le 2\\ 4x - 7 & x > 2 \end{cases}$$

(a) Find the value of gg(0).

(b) Find all values of x for which

The function h is defined by

$$h(x) = (x - 2)^2 + 1$$
  $x \le 2$ 

(c) Explain why h has an inverse but g does not.

(1)

(2)

(4)

(d) Solve the equation

$$h^{-1}(x) = -\frac{1}{2}$$
(3)

(Total for question = 10 marks)

#### Q4.

The function f is defined by

$$f(x) = \frac{3x - 7}{x - 2} \qquad x \in \mathbb{R}, x \neq 2$$

(a) Find  $f^{-1}(7)$ 

(2)

(b) Show that  $ff(x) = \frac{ax+b}{x-3}$  where *a* and *b* are integers to be found.

(3)

(Total for question = 5 marks)

#### Q5.

The functions f and g are defined by

$$f(x) = 7 - 2x^2 \qquad x \in \mathbb{R}$$
$$g(x) = \frac{3x}{5x - 1} \qquad x \in \mathbb{R} \qquad x \neq \frac{1}{5}$$

(a) State the range of f

(1) (b) Find gf (1.8)

## (Total for question = 5 marks)

# <u>Mark Scheme</u>

### Q1.

| Ques  | tion                                                                                                                                                                                              | Scheme                                                                                  | Marks | AOs  |  |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------|------|--|
| (a)   | )                                                                                                                                                                                                 | $gf(x) = 3\ln e^x$                                                                      | M1    | 1.1b |  |
|       |                                                                                                                                                                                                   | $=3x, (x \in \mathbb{R})$                                                               | A1    | 1.1b |  |
|       |                                                                                                                                                                                                   |                                                                                         | (2)   |      |  |
| (b)   | )                                                                                                                                                                                                 | $gf(x) = fg(x) \Longrightarrow 3x = x^3$                                                | M1    | 1.1b |  |
|       |                                                                                                                                                                                                   | $\Rightarrow x^3 - 3x = 0 \Rightarrow x =$                                              | M1    | 1.1b |  |
|       |                                                                                                                                                                                                   | $\Rightarrow x = (+)\sqrt{3}$ only as $\ln x$ is not defined at $x = 0$ and $-\sqrt{3}$ | M1    | 2.2a |  |
|       |                                                                                                                                                                                                   |                                                                                         | (3)   |      |  |
|       | (5 marks)                                                                                                                                                                                         |                                                                                         |       |      |  |
| Notes |                                                                                                                                                                                                   |                                                                                         |       |      |  |
| (a)   |                                                                                                                                                                                                   |                                                                                         |       |      |  |
| M1:   | For a                                                                                                                                                                                             | applying the functions in the correct order                                             |       |      |  |
| A1:   | The                                                                                                                                                                                               | The simplest form is required so it must be $3x$ and not left in the form $3\ln e^x$    |       |      |  |
|       | An answer of $3x$ with no working would score both marks                                                                                                                                          |                                                                                         |       |      |  |
| (b)   | (b)                                                                                                                                                                                               |                                                                                         |       |      |  |
| M1:   | Allow the candidates to score this mark if they have $e^{3\ln x} = \text{their } 3x$                                                                                                              |                                                                                         |       |      |  |
| M1:   | For solving their cubic in $x$ and obtaining at least one solution.                                                                                                                               |                                                                                         |       |      |  |
| A1:   | For either stating that $x = \sqrt{3}$ only as $\ln x$ (or $3 \ln x$ ) is not defined at $x = 0$ and $-\sqrt{3}$                                                                                  |                                                                                         |       |      |  |
|       | or stating that $3x = x^3$ would have three answers, one positive one negative and one zero but $\ln x$ (or $3\ln x$ ) is not defined for $x \le 0$ so therefore there is only one (real) answer. |                                                                                         |       |      |  |
|       | Note: Student who mix up fg and gf can score full marks in part (b) as they have already been penalised in part (a)                                                                               |                                                                                         |       |      |  |

Q2.

| Questi       | on Scheme                                                                                                                                                                            |      | A0s      |  |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------|--|
|              | $g(x) = \frac{2x+5}{x-3}, \ x \ge 5$                                                                                                                                                 |      |          |  |
| (a)          | $g(5) = \frac{2(5)+5}{5-3} = 7.5 \implies gg(5) = \frac{2("7.5")+5}{"7.5"-3}$                                                                                                        | M1   | 1.1b     |  |
| Way I        | $gg(5) = \frac{40}{9} \left( \text{ or } 4\frac{4}{9} \text{ or } 4.4 \right)$                                                                                                       | A1   | 1.1b     |  |
|              |                                                                                                                                                                                      | (2)  |          |  |
| (a)<br>Way 2 | $gg(x) = \frac{2\left(\frac{2x+5}{x-3}\right)+5}{\left(\frac{2x+5}{x-3}\right)-3} \implies gg(5) = \frac{2\left(\frac{2(5)+5}{(5)-3}\right)+5}{\left(\frac{2(5)+5}{(5)-3}\right)-3}$ | M1   | 1.1b     |  |
|              | $gg(5) = \frac{40}{9} \left( \text{ or } 4\frac{4}{9} \text{ or } 4.4 \right)$                                                                                                       | A1   | 1.1b     |  |
|              |                                                                                                                                                                                      | (2)  |          |  |
| (b)          | {Range:} $2 < y \le \frac{15}{2}$                                                                                                                                                    | B1   | 1.1b     |  |
|              |                                                                                                                                                                                      |      |          |  |
|              | 2×+5                                                                                                                                                                                 |      |          |  |
| Way 1        | $y = \frac{2x+3}{x-3} \Rightarrow yx-3y = 2x+5 \Rightarrow yx-2x = 3y+5$                                                                                                             | M1   | 1.1b     |  |
|              | $x(y-2) = 3y+5 \implies x = \frac{3y+5}{y-2}  \left\{ \text{or } y = \frac{3x+5}{x-2} \right\}$                                                                                      | M1   | 2.1      |  |
|              | $g^{-1}(x) = \frac{3x+5}{x-2},  2 < x \le \frac{15}{2}$                                                                                                                              | A1ft | 2.5      |  |
|              |                                                                                                                                                                                      | (3)  |          |  |
| (c)<br>Way 2 | $y = \frac{2x-6+11}{x-3} \Rightarrow y = 2 + \frac{11}{x-3} \Rightarrow y-2 = \frac{11}{x-3}$                                                                                        | M1   | 1.1b     |  |
|              | $x-3 = \frac{11}{y-2} \Rightarrow x = \frac{11}{y-2} + 3  \left\{ \text{or } y = \frac{11}{x-2} + 3 \right\}$                                                                        | M1   | 2.1      |  |
|              | $g^{-1}(x) = \frac{11}{x-2} + 3$ , $2 < x \le \frac{15}{2}$                                                                                                                          | A1ft | 2.5      |  |
| ļ            |                                                                                                                                                                                      | (3)  | (marler) |  |
|              | Notes for Ouestion                                                                                                                                                                   | (0   | marks)   |  |
| (a)          |                                                                                                                                                                                      |      |          |  |
| M1:          | Full method of attempting g(5) and substituting the result into g                                                                                                                    |      |          |  |
| Note:        | Way 2: Attempts to substitute $x = 5$ into $\frac{2\left(\frac{2x+5}{x-3}\right)+5}{\left(\frac{2x+5}{x-3}\right)-3}$ , o.e. Note that $gg(x) = \frac{9x-5}{14-x}$                   |      |          |  |
| Al:          | Obtains $\frac{40}{9}$ or $4\frac{4}{9}$ or $4.4$ or an exact equivalent                                                                                                             |      |          |  |
| Note:        | Give A0 for 4.4 or 4.444 without reference to $\frac{40}{9}$ or $4\frac{4}{9}$ or $4.4$                                                                                              |      |          |  |

| Notes for Question Continued |                                                                                                                                        |  |  |
|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--|--|
| (b)                          |                                                                                                                                        |  |  |
| <b>B1</b> :                  | States $2 < y \le \frac{15}{2}$ Accept any of $2 < g \le \frac{15}{2}$ , $2 < g(x) \le \frac{15}{2}$ , $\left(2, \frac{15}{2}\right)$  |  |  |
| Note:                        | Accept $g(x) > 2$ and $g(x) \le \frac{15}{2}$ o.e.                                                                                     |  |  |
| (c)<br>Way 1                 |                                                                                                                                        |  |  |
| M1:                          | Correct method of cross multiplication followed by an attempt to collect terms in $x$ or terms in a swapped $y$                        |  |  |
| M1:                          | A complete method (i.e. as above and also factorising and dividing) to find the inverse                                                |  |  |
| Alft:                        | Uses correct notation to correctly define the inverse function g <sup>-1</sup> , where the domain of                                   |  |  |
|                              | g-1 stated correctly or correctly followed through (using correct notation) on the values shown in                                     |  |  |
|                              | their range in part (b). Allow $g^{-1}: x \to .$ Condone $g^{-1} =$ Do not accept $y =$                                                |  |  |
| Note:                        | Correct notation is required when stating the domain of $g^{-1}(x)$ . Allow $2 < x \le \frac{15}{2}$ or $\left(2, \frac{15}{2}\right]$ |  |  |
|                              | Do not allow any of e.g. $2 < g \le \frac{15}{2}$ , $2 < g^{-1}(x) \le \frac{15}{2}$                                                   |  |  |
| Note:                        | Do not allow A1ft for following through their range in (b) to give a domain for $g^{-1}$ as $x \in \mathbb{R}$                         |  |  |
| (c)<br>Way 2                 |                                                                                                                                        |  |  |
| <b>M1</b> :                  | Writes $y = \frac{2x+5}{x-3}$ in the form $y = 2 \pm \frac{k}{x-3}$ , $k \neq 0$ and rearranges to isolate y and 2 on one side         |  |  |
|                              | of their equation. Note: Allow the equivalent method with x swapped with y                                                             |  |  |
| M1:                          | A complete method to find the inverse                                                                                                  |  |  |
| Alft:                        | As in Way 1                                                                                                                            |  |  |
| Note:                        | If a candidate scores no marks in part (c), but                                                                                        |  |  |
|                              | <ul> <li>states the domain of g<sup>-1</sup> correctly, or</li> </ul>                                                                  |  |  |
|                              | <ul> <li>states a domain of g<sup>-1</sup> which is correctly followed through on the values shown in their</li> </ul>                 |  |  |
|                              | range in part (b)<br>then give special case (SC) M1 M0 A0                                                                              |  |  |

## Q3.

| Part             | Working or answer an examiner might expect to see                                                                                | Mark | Notes                                                                              |
|------------------|----------------------------------------------------------------------------------------------------------------------------------|------|------------------------------------------------------------------------------------|
| (a)              | g(0) = 5                                                                                                                         | M1   | This mark is given for a method to find $g(0)$                                     |
|                  | gg(0) = g(5) = 13                                                                                                                | A1   | This mark is given for a correct value for $gg(0)$                                 |
| (b)              | $(x-2)^2 + 1 > 28$<br>$(x-2)^2 > 27$<br>$x-2 > 3\sqrt{3}$                                                                        | M1   | This mark is given for a method to solve $g(x) > 28$ when $x \le 2$                |
|                  | $x < 2 - 3\sqrt{3}$                                                                                                              | A1   |                                                                                    |
|                  | 4x - 7 > 28<br>4x > 35<br>$x > \frac{35}{4}$                                                                                     | M1   | This mark is given for a solving $g(x) > 28$<br>when $x > 2$                       |
|                  | $x < 2 - 3\sqrt{3}$ and $x > \frac{35}{4}$                                                                                       | A1   | This mark is given for a correct range of values of x for which $g(x) > 28$ stated |
| (c)              | h <sup>-1</sup> exists since h is a one-to-one function;<br>g <sup>-1</sup> does not exists since g is a many-to-one<br>function | B1   | This mark is given for a valid explanation                                         |
| (d)              | $h^{-1}(x) = 2 - \sqrt{(x-1)}$                                                                                                   | B1   | This mark is given for finding an expression for $h^{-1}(x)$                       |
|                  | $2 \pm \sqrt{(x-1)} = -\frac{1}{2}$                                                                                              | M1   | This mark is given for a method to rearrange to find a value for $x$               |
|                  | x = 7.25                                                                                                                         | A1   | This mark is given for a correct value of $x$                                      |
| (Total 10 marks) |                                                                                                                                  |      |                                                                                    |

#### Q4.

| Question | Scheme                                                                                                                                                   | Marks      | AOs          |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------|
| (a)      | Either attempts $\frac{3x-7}{x-2} = 7 \Rightarrow x =$<br>Or attempts f <sup>-1</sup> (x) and substitutes in $x = 7$                                     | M1         | 3.1a         |
|          | $\frac{7}{4}$ oe                                                                                                                                         | A1         | 1.1b         |
|          |                                                                                                                                                          | (2)        |              |
| (b)      | Attempts $ff(x) = \frac{3 \times \left(\frac{3x-7}{x-2}\right) - 7}{\left(\frac{3x-7}{x-2}\right) - 2} = \frac{3 \times (3x-7) - 7(x-2)}{3x-7 - 2(x-2)}$ | M1,<br>dM1 | 1.1b<br>1.1b |
|          | $=\frac{2x-7}{x-3}$                                                                                                                                      | A1         | 2.1          |
|          |                                                                                                                                                          | (3)        |              |
|          |                                                                                                                                                          |            | (5 marks)    |
| Notes:   |                                                                                                                                                          |            |              |

(a)

M1: For either attempting to solve  $\frac{3x-7}{x-2} = 7$ . Look for an attempt to multiply by the (x-2) leading to a value for x.

Or score for substituting in x = 7 in  $f^{-1}(x)$ . FYI  $f^{-1}(x) = \frac{2x-7}{x-3}$ 

The method for finding  $f^{-1}(x)$  should be sound, but you can condone slips.

A1:  $\frac{7}{4}$ 

(b)

M1: For an attempt at fully substituting  $\frac{3x-7}{x-2}$  into f(x). Condone slips but the expression must

have a correct form. E.g.  $\frac{3 \times \left(\frac{*-*}{*-*}\right) - a}{\left(\frac{*-*}{*-*}\right) - b}$  where *a* and *b* are positive constants.

dM1: Attempts to multiply all terms on the numerator and denominator by (x-2) to create a fraction  $\frac{P(x)}{Q(x)}$ 

where both P(x) and Q(x) are linear expressions. Condone  $\frac{P(x)}{Q(x)} \times \frac{x-2}{x-2}$ 

A1: Reaches  $\frac{2x-7}{x-3}$  via careful and accurate work. Implied by a = 2, b = -7 following correct work.

Methods involving  $\frac{3x-7}{x-2} \equiv a + \frac{b}{x-2}$  may be seen. The scheme can be applied in a similar way FYI  $\frac{3x-7}{x-2} \equiv 3 - \frac{1}{x-2}$ 

| Question                                                                                                                                                                                                                                                                                                                                                                                                                         | Scheme                                                                                                               | Marks      | AOs  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|------------|------|--|
| (a)                                                                                                                                                                                                                                                                                                                                                                                                                              | $y \leqslant 7$                                                                                                      | B1         | 2.5  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                      | (1)        |      |  |
| (b)                                                                                                                                                                                                                                                                                                                                                                                                                              | $f(1.8) = 7 - 2 \times 1.8^2 = 0.52 \Rightarrow gf(1.8) = g(0.52) = \frac{3 \times 0.52}{5 \times 0.52 - 1} = \dots$ | M1         | 1.1b |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                  | $gf(1.8) = 0.975$ oe e.g. $\frac{39}{40}$                                                                            | <b>A</b> 1 | 1.1b |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                      | (2)        |      |  |
| (c)                                                                                                                                                                                                                                                                                                                                                                                                                              | $y = \frac{3x}{5x-1} \Longrightarrow 5xy - y = 3x \Longrightarrow x(5y-3) = y$                                       | M1         | 1.1b |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\left(g^{-1}(x)=\right)\frac{x}{5x-3}$                                                                              | A1         | 2.2a |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                      | (2)        |      |  |
| (5 marks)                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                      |            |      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                  | Notes                                                                                                                |            |      |  |
| (a)<br>B1: Correct range. Allow $f(x)$ or $f$ for $y$ . Allow e.g. $\{y \in \mathbb{R} : y \leq 7\}, -\infty < y \leq 7, (-\infty, 7]$<br>(b)<br>M1: Full method to find $f(1.8)$ and substitutes the result into $g$ to obtain a value.<br>Also allow for an attempt to substitute $x = 1.8$ into an attempt at $gf(x)$ .<br>E.g. $gf(x) = \frac{3(7-2x^2)}{5(7-2x^2)-1} = \frac{3(7-2(1.8)^2)}{5(7-2\times(1.8)^2)-1} = \dots$ |                                                                                                                      |            |      |  |
| A1: Correct value                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                      |            |      |  |
| <ul><li>M1: Correct attempt to cross multiply, followed by an attempt to factorise out x from an xy term and an x term.</li><li>If they swap x and y at the start then it will be for an attempt to cross multiply followed by an attempt to factorise out y from an xy term and a y term.</li></ul>                                                                                                                             |                                                                                                                      |            |      |  |
| A1: Correct expression. Allow equivalent correct expressions e.g. $\frac{-x}{3-5x}$ , $\frac{1}{5} + \frac{3}{25x-15}$<br>Ignore any domain if given.                                                                                                                                                                                                                                                                            |                                                                                                                      |            |      |  |